TDA Progress Report 42-69

Algorithms for Software Development Version Control

and Change Detection

R. C. Tausworthe
DSN Data Systems Section

This article describes simple computer algorithms for processing source program and
text data files in order to extract change detection, version control, version history, and
current status information easily, These algorithms presuppose that it is possible to attach
to each record of the source files a 6-character code, placed within delimiters that will
cause the compiler, or other using program, to ignore this code field. The code contains a
2-character code for a character-by-character position-sensitive checksum of the record,
another for the record number in the file, and a third for the date on which the encoding
took place. Once the source file has been thus encoded, it is possible to detect the follow-
ing transactions on the file since the most recent version coding: (a) addition of new
records (having no version code); (b) modification of existing records; (c) deletion of a
number of records; (d) movement and/or duplication of existing records; and (e) modifi-
cation and duplication of records. In addition, it is possible to extract a version history
of the number of records created or modified by date. A special file listing program is
described which prints the file records without showing the version codes, but places a
“change bar” at the right margin whenever a change is detected, The program also pro-

March and April 1982

vides a list of changed pages and a version history.

l. Introduction

During the development and maintenance phases of soft-
ware tasks, it is extremely convenient to have some way of
distinguishing in what way a particular version of the product
differs from its ancestor versions. In this way, those persons
making and monitoring the changes in the product can more
readily focus on the differences made since a particular proven
benchmark., When one is given a new release of a large docu-
ment or program for review, for example, one must be able to
locate what is different about this version, as opposed to the
last one, in order to avoid the needless expense of rereading
the entire document.

20

Managers concerned with implementation status may be
interested in knowing the rate at which the product is being
developed, as well as other statistics of the process, such as
the amounts of new code, modified code, and reused, unmodi-
fied code contributing to a particular effort.

It is often important to control the issuance of new ver-
sions, so that only a known, prescribed, and contracted capa-
bility is released to customers and utilized by them.

Such change identification, version history, status, and
version control processes are virtually infeasible for large com-

puter programming projects without computerized aid. Some
techniques that have been employed in the past include com-
pile-time dating of the listing and source file, usage of file com-
parison programs, and special annotations of the source made
by a text editor while producing the program text. All of these
techniques are useful, but have their limitations, as does the
technique described in this article. Compile-time dating, for
instance, suffers by only telling when the program was last
compiled, not what is different about the program, File com-
parison programs are generally slow and can only identify rela-
tively small changes between the two versions of the source.
Annotations placed in the source by a text editor, usually
limited to sequence numbers of the records, or perhaps a ver-
sion number or date of last update of the entire file, do not
provide for identification of modifications made on individual
records, nor do they distinguish which lines have appeared in
which versions of the software.

This article describes a combination of techniques yielding
simple computer algorithms for change identification and ver-
sion history that are efficient in file storage requirements,
execution speed, programmer overhead, and operations. These
algorithms can be applied whenever it is possible to attach to
each record of the source files a 6-character code, placed
within delimiters that will cause the compiler, or other using
program, to ignore the code field. The code contains a
2-character code for a character-by-character position-sensitive
checksum of the record, another for the record number in the
file, and a third for the date on which the encoding took place.
Once the source file has been thus encoded, it is possible to
detect the following transactions on the file since the most
recent version coding: (a) addition of new records (having no
version code); (b) modification of existing records; (¢) deletion
of a number of records; (d) movement and/or duplication of
existing records; and (e) modification and duplication of
records. In addition, it is possible to extract a version history
of the number of records created or modified by date. A spe-
cial file listing program is described which prints the file
records without showing the version codes, but places a
“change bar” at the right margin wherever a change is de-
tected. The program also provides a list of changed pages and
version history.

The scenario of operations is as follows (see Fig. 1): The
principal activities associated with software development and
sustaining involve the programmer interacting with a text
editor building and modifying program and documentation
source files. At regular intervals, these source files are sub-
mitted to a version encoding program that checks each line
for correct checksum and then resequences the file. When the
checksum is correct (i.e., matches the checksum in the code
supplied in an earlier run), the date is not changed. If the
checksum is in error, the current date is inserted in the date

code. Thus, after each run of the encoding program, the source
file has a correct checksum code, correct sequence number
code, and applicable date for each line in the file.

Subsequent editing of the file may create new lines, delete
old ones, modify characters, insert characters, move lines, or
copy (reuse) existing lines. The combination of the three ele-
ments of the line code permits all of these transactions to be
detected, including identification of changes made since a
given status date.

Each time the source file is checksummed, information as
to which lines have been added, which modified, how many
were deleted, etc., is lost. However, version history informa-
tion is retained, as it is possible to tell which lines were redated
at each checksumming,

Il. Source File Structure

The source file structure after the version coding operation
is described in the following schematic logic structure:

Source file
*Physical line
*Data segment
Version code
Left delimiter
Checksum code
2 characters
Sequence number code
2 characters
Date code
2 characters
o Right delimiter

The annotations (* and o) in this logic refer to iteration and
alternative structures, respectively. Indentation corresponds to
refinement of the item definition. This structure thus defines
the source file as an iteration of physical lines, each made up
of a number (perhaps zero) of data segments, followed by a
version code, The version code, in turn, consists of a left
delimiter, checksum, sequence number, date, and perhaps a
right delimiter (depending on the compiler or program using
the file).

The delimiters will generally need to be file-dependent. For
program source files, these delimiters will be chosen to make
the code appear as a comment to the compiler, perhaps with a
character or two thrown in for easy recognition that this com-
ment is the version code, not an ordinary comment,

Other files may require special handling procedures, such as
special input subroutines to fetch input records and strip out

21

the version codes, or a preprocessing pass of the source file to
create a dummy file without the codes for access by the pro-
gram.

Ill. Generating the Two-Character Codes

The two characters used in the three code elements could
be any printable members of the ASCII set, i.e., ranging from
space (character 32) through the tilde (character 126). Control
characters (0 through 31) are apt to cause sensitivities within
the using program(s), especially compilers, and are thus
omitted here. Also, characters following “z” in the ASCII set
may be set aside for use only in the delimiters, leaving 91 char-
acters for the code elements.

Care must be taken in generating the version code not to
generate character sequences sensitive to the using program.
For example, if a Pascal program were being version encoded
using comment delimiters “(**“and”*)” around the code, then
care would have to be taken to ensure that the characters “*)”
do not appear within the version code. Pascal has alternate
comment delimiters “{“and”}”, ASCII characters 123 and
125, which may be used to obviate this problem. However,
PL/I programs will have problems with *“/*“and”“*/”. If the
algorithms herein are to be applied to Pascal programs not
permitting the alternate delimiters or to PL/I programs, then
the version code should omit the offending combinations. For
the remainder of this article, we shall assume that the full
91-character span can be used.

The combination of two such characters is sufficient to
span a range of 91 X 91 = 8281 alternatives. The checksum of
characters on the line, discussed later, will lie randomly within
the interval (0, 8281). The probability that a randomly modi-
fied line will have the same checksum as was recorded before
the change will be 1/8281 = 0.00012; this low figure is prob-
ably sufficient for most change identification purposes. The
particular checksumming algorithm presented is one which
makes almost all of the usual types of modifications to aline
detectable within the probability stated above.

The limit of the sequence number to 8281 limits the file
size to as many records; this probably does not pose much of
a problem, as programs this large are usually segmented for
compilation purposes, and documents this large are similarly
segmented for ease in processing.

The correspondence between a number N and its represen-
tation by the two code characters C1 and C2 is defined by

Cl = chr(ORD(’' ')+N/91)

C2

chr(ORD(’ ')+ (N modulo 91))

22

where chr(n) is the ASCII character having collating sequence
number n and ORD(C) is the collating sequence number for
the character C. The ASCII collating sequence number for
space is 32.

Similarly, given a code with the two characters C1 and C2,
the corresponding number N is

N

91 * [ORD(C1) - ORD(’ ')] + ORD(C2) - ORD(' ')

91 * ORD(C1) + ORD(C2) ~ 92 * ORD(' ')

A. The Date Code

The conversion from a date having day number d in month
m of year 1980+y into the date code number D is defined by

D=(@@1D+31*m-1)+372 *y

This date number can be encoded into two characters as
described above.

When the two-character date code has been retrieved from a
line and converted to a date number D, the day of the month
will be computed as 1+(D modulo 31), the month as 1+(D/31
modulo 12), and the year as 1980 + (D/372). In these compu-
tations, and indeed, throughout the remainder of this article,
integer division is assumed (remainder discarded) whenever
“/” appears in an expression. Although this date encoding
appears to use up 372 days per year (ie., 6 or 7 unused num-
bers each year), it is still sufficient to carry the version code
through 8281/372=22.26 years, or until March 5, 2002,

B. The Checksum Code

The line characters to be checksummed, call them Cy, ...,
Cy, are combined by the following algorithm:

Each character C; is combined with the line checksum L
accumulated so far to obtain a new value by bit-wise
“exclusive-or” (xor) and “and” operations. First set L = 0;
then for each of the C,

set L = L xor 2*(L and 16383),
and then

set L = L xor (L/16384) xor ORD(C}))

Finally,

set L = (L modulo 8281)

This computation simulates the driving of a maximum-period
linear feedback 15-element finite-state machine with the char-

acter values from the input line. Values of the checksum lie in
the range 0-8281. The iterations above, when given only a
single non-null character and nulls thereafter, generate a
pseudo-random sequence which repeats only after 215-1 =
37,767 such characters have been input. The combination
when characters are non-null is a convolution of the input
sequence with the linear pseudo-random response of the finite-
state machine. This method tends to randomize the checksum
values in an extremely character-sensitive way, so that the
chances of any modification to an input line falling in the
same equivalence class of input lines having the same check-
sum is 1/8281 = 0.00012.

The recursion relation above corresponds to the maximum-
period linear shift-register device having the primitive charac-
teristic polynomial over GF(2)

f) = %15 +x+ 1

The algorithm for utilization of this polynomial to generate
pseudo-random numbers is given.in [Ref. 1]. The operations
are to shift the checksum left one bit, filling a O on the right,
and xor with the unshifted value. Then xor this intermediate
result with a right shift of itself by (15-1)=14, filling 0’s in on
the left. For further information regarding the properties of
shift-register sequences, see Ref. 2.

C. Sequence Number Code

The sequence number code is a straight translation of the
record sequence number, starting at zero, into the two-
character code, and vice-versa.

IV. The Checksum Program

This section describes the design of a prototype program

written to produce the updated version-encoded source file. For
convenience, it will be referred to herein as “CHECKSUM”.

Some basic assumptions about the files processed by the
program and the processing done by the program are:

® Three types of version codes will be accommodated:

— files requiring only a left version code delimiter

— files requiring both left and right delimiter

— files in which version codes are restricted to certain
columns on the input line

o i will be possible to detect which of these version code
types is to be used from the file name, say by the file
name extension; alternately the program could accept
this information from the user of the program,

® Source (program) files may have embedded comment
lines containing design information expressed in a Pro-
gram Design Language (PDL). Such lines are distin-
guished by the presence of an “extraction code” at the
beginning of the line.

® PDL lines and non-PDL lines are to have separate,
independent sequence numbering so that if the PDL is
extracted, the numbering is still correct,

® PDL and non-PDL lines may have different delimiters,
if accommodated by the using program,

® Placement of the version code on an output line may be
designated to appear.in a certain column on the line if
desired.

The main procedure of the program is described in the
program design language of Fig. 2; the structure of the version
code parameter lookup table is presented in Fig. 3; the extrac-
tion algorithm for retrieving version code information from
the input line is given in Fig. 4; and the method for checksum-
ming and reformatting of the output line is shown in Figs. 5
and 6.

V. The Version Code Removal Program

The CHECKSUM program must detect whether an input
line has a version code on it, and whether it is a PDL variety or
not, so that the code can be removed and another reattached
in its place. However, in some applications, it may be neces-
sary to strip out the version codes from an entire file before it
can be propetly processed by its using program, or when a file
is to be completely reencoded.

The algorithm given in Fig. 4 has been used in such a pro-
gram, called STRIP, which removes the version codes from an
entire file. The algorithm has been only slightly modified,
shortened because the BEGINNING, SEQUENCE_NUMBER,
and SEQUENCE _ CODE variables are not needed.

VI. The File Listing Program

The file listing program, called PRINT, is similar to the
CHECKSUM program in overall structure, except that a
“change bar” is reattached to the output line, rather than the
version code. Also, the PRINT program keeps track of what
sequence numbers have appeared in the file, and therefore
knows when deletions and duplications have occurred, as well
as the number of lines which have undergone such transactions
with the text editor since the most recent processing by
CHECKSUM.

23

Besides the name of the file to be processed, a status date is
given to the PRINT program; all lines of the input file having a
date code after this status date will be identified on the listing.
The change bar applied to the output is chosen to distinguish
what kind of change has been detected:

Detected change

Change
bar Sequence
symbol Checksum number Date
No change (None) OK OK = < Status date
Change since
status date [] OK OK > Status date
Added line [A] None None None
Sequence number
went backwards [B] - < Previous -
Deleted line(s) [D] — > Previous+1 -
Modified line [M] Bad OK -
Reused line [R] OK Duplicate -
Reused and :
Modified [RM] Bad Duplicate -

Whenever [B] or [D] situations are detected, a blank line
is printed with these change bars; then the input line checksum
and date codes are checked as in the table above for possible
application of either (none), {], or {M]. The PRINT pro-
gram records the page number each time a change is detected.
A list of changed pages is then output to assist readers of the
documentation. Separate counts of the numbers of input lines
falling into each of these categories (except [B] and [D]) are
maintained as the input file is processed. The total number of
deletions is determined after the entire file has been processed.

In addition, each time an input line is processed, the version
history is updated, as follows: The date on the line (or current
date if the line has none) is found (or inserted, if not found) in
the VERSION_DATE field of the VERSION_HISTORY table,
and the corresponding NUMBER_OF_TIMES entry in the
table is incremented. After the entire file has been processed,
the version history of dates vs. number of lines is printed.

The algorithm for detection of deletions and duplications
of records makes use of a list of pairs of numbers correspond-
" ing to intervals of sequence numbers not yet found up to the
current input line. Initially, the PRINT program starts with the
list containing only the pair (0, INFINITY). At any time the
list will contain a number of such pairs signifiying ranges of
sequence numbers not yet seen. For example, if at one point
the list contained the pairs (5, 8),(10, 10)and (12, INFINITY),
then only the sequence numbers 0, 1, 2, 3,4, 9, and 11 will
have been seen so far.

24

Whenever this list is checked against the current input line
sequence code (converted to a number), the sequence number
may be found not to appear anywhere within the intervals of
any of the pairs in the list; in this case, the sequence number is
a duplication, it has already been seen., However, in the usual
case, the sequence number has not been seen yet, having been
determined to lie within the interval specified by a particular
pair in the list. Then one of three things takes place:

(1) If the sequence number is the lower limit of the pair,
this lower limit is incremented by 1

(2) If the sequence number is the upper limit of the pair,
this upper limit is decremented by 1

(if in either of these two cases the lower limit after-
wards exceeds the upper limit, the pair is deleted from
the list)

(3) If the sequence number is between the limits (low,
high) of the pair, the pair is split into two pairs:

(low, seq_no~1), (seq_no+1,high)

When all the records of the input file have been processed,
the number of deletions may be computed as follows: the
last list pair (last+1, INFINITY) is discarded; the remaining
pairs identify the gaps in sequence numbers of the input file,
These intervals may be printed out, if desired (PRINT does
not, however). The total number of deletions is the (high-
low)t+1 value of each list pair summed over all remaining list
pairs.

Since the input file may be a source program containing
embedded PDL statements sequence numbered separately,
it is necessary for the PRINT program to maintain separate
SEQUENCE_NUMBER counters and occurrence lists for the
two types of records.

VIl. Application Problems

Several concerns may occur to those considering the appli-
cation of version codes to their source files. These concerns
include

(1) Expansion of file size due to version code overhead.
(2) Sensitivity of the using program(s) to the version code.

(3) Effort demands and discipline required of user to
update the version codes periodically.

(4) Effort and nuisance of having to remove the codes
before submitting the file to a sensitive using program.

(5) Nuisance in seeing meaningless version codes on com-
piler output listings, even when compiler is insensitive
to the codes.

(6) Impracticality of applying the version codes to some
kinds of packed text files, such as commonly created
by some word processors, that are free-form and not
line-oriented.

The applicability of the technique described in this article is
therefore not universal, as it stands. Some of the difficulties
may be slaked by the advantages of a version control and
change identification capability, such as a slight file size over-
head, the discipline of update and archival, etc. Others, such as
the sensitivity of the using program(s) to the appearance of the
version code, present real problems.

The technique, as it stands, is very useful in the following
cases:

(1) For input text files of any kind whenever the using
program(s) may be adapted, or written from the out-
set, to ignore the version codes. Programmers can be
supplied with standard library subroutines to handle
input of fundamental data types.

(2) For program source code when the programming lan-
guage permits a comment to end the line, signalled by
a comment left delimiter only.

(3) For program source code when the programming lan-
guage permits a comment to end the line, using both
left and right comment delimiters. This usually requires
that the programmer not put comments in the program
that extend across physical line boundaries.

The “algorithms herein may be modified to accommodate
the last of these cases when comments do extend over physical
line boundaries. Such modification would demand only that
the detection and reattachment procedures for the version
code be extended to sense whenever the version code was
being inserted within a comment or not, and to choose alter-
nate delimiters as appropriate.

Should the method described above prove altogether infeas-
ible becausé of the limitations listed, it may prove worthwhile
to investigate the reasonability of modifying the operating sys-
tem to reserve positions within each file record for version
code usage, with special access functions to retrieve and
deposit these codes. Existing programs using a file would then
be unaware of the version code altogether, as it would never be

delivered by the operating system when file data is requested. -
There are some obvious problems that one immediately
encounters in such a proposed solution, such as how, the oper-
ating system. accommodates an existing, unmodified text
editor in maintaining the correspondence of input file codes
with rewritten output file codes. Such an investigation seems
premature at this point, however,

VIil. Prototype Demonstration Results

To demonstrate the methods of this article, the program
text of Fig, 2 was chosen for example. It was checksummed,
modified, and rechecksummed repeatedly to simulate the
growth and correction of a software design. Then it was modi-
fied without rechecksumming, so that additions, deletions,
modifications, and duplications would be made more evident.
Then it was printed out using PRINT, so that changes and
version history would be shown.

Figure 2 shows the original text; Fig. 7 shows the encoded
text, using left and right delimiters “{“ “and”}”, respec-
tively; and Figs. 8 and 9 show the output of the PRINT pro-
gram, which illustrates the appearance of change bars, the
change statistics, and the version history printout. The list of
changed pages is not shown, since the example is but one page
long.

IX. Conclusion

The technique given here is a useful and feasible method for
providing source file change detection and version conirol
measures for many types of program, documentation, and con-
figuration data files. As the application of such techniques
becomes more widespread, one will find that the sensitivities
to version encoding will certainly decrease. Operating systems
will accommodate the codes automatically; compilers and
other system sofiware will expect such codes to be present;
programmers will come to expect the system to provide
version statistics services without incursion on their produc-
tivity; and managers and maintenance personnel will be able to
perform their functions more effectively because of the better
visibility into exactly what the extent and content of changes
to a software package have been in any given release.

25

26

References

1. Tausworthe, R, C., “Random Numbers Generated by Linear Recurrence Modulo 2,”
Math. Comp., Vol. XIX, No. 90, pp. 201-208, 1965,

2. Golomb, S. W., et al., Shift-Register Sequences, Holden-Day, Inc., San Francisco,
Calif,, 1967.

TEXT
EDITOR
PROGRAM

\i

SOURCE
FILE

CHECKSUM
VERSION
ENCODING
PROGRAM
LISTING
PRINT WITH
SOURCE CHANGE
LISTING BARS -AND
PROGRAM VERSION
HISTORY

TO COMPILER OR
OTHER USING PROGRAM

Fig. 1. Software develo'pment version control and change identification scenario

27

Program: CHECKSUM
/R RN RN RN R AR RN RN AR DR RRRRRRERRRARRBRRARRRR AR/

/¥ */
/% This program inserts a version code on each physical line #/
/* of a source file for use in applications where version #y
/: statistics of such files are to be extracted and analyzed. %/
/ */
JEERE RN RN R RN RR RN AR R RN R RRRARR KRR AR RN KRR E N RN R AR R/
o1 define global_constants

2 declare global_variables

.3 initialize the program

A announce the program title and version

.5 get_todays date /* encode it into date_code #/

.6 loop /¥ for at least one file, and maybe more ¥/

.7 ! get_file_names(IN_FILE, OUT_FILE)

/% OUT_FILE is a dummy file name only */

!
.8 ! open both files
.9 ! set_up_version_delimiters /% using extension from ¥/
! /¥ IN_FILE name to identify the particular ¥/
! /* delimiters, */
.10 ! reset_parameters /¥* to initial values, in case L7
! /* more than one file is processed. */
.11 ! loop while not end_of file on input
.12 ! ! dinput a line /* check for ASCII characters L7
! ! /* only and set WARNING switch if not %/
! ! /* already set and file is not ASCII */
.13 ! ! extract_version_code from input line
LU ! ! compute_checksum of input line
.15 ! ! reattach _new_version_code
! ! /* add tabs to code_column, if indicated
! ! /% also, set WARNING if line would be too long
.16 ! ! output the line
! !..repeat
A7 ! close files
.18 ! if WARNING not set
.19 1 rename the OUT_FILE as IN_FILE
! :=>(else)
.20 B inform the user that the checksummed file has
| B the dummy file name
! :..end if

.21 !..repeat if user desires another run
end program

Fig. 2. The main program design of the CHECKSUM program

Data GLOBAL_CONSTANTS

Let FILE _INFO be a table containing delimiter information vs file type
Fach "record" of the table has the following format:
. FILE_EXTENSION, the search key which determines the
following:
. KIND, integer, a composite made up of SourceMode and PDLmode:
SourceMode = KIND modulo 3

0 for left delimiter required only in source file
1 for left and right delimiters both required
2 for version code located by column only
(KIND/3) =~ 1
-1 when no CRISP extraction is to take place
0 for left delimiter required only in source file
1 for left and right delimiters both required
2 for version code located by column onlf
+ EXTRACT_SIGNAL, string prefixing lines that are embedded PDL
. CODE_COLUMN, integer, for placement of code on output line, when >0
. LEFT_DELIMITER[O] for source lines that are not PDL

PDLmode

. RIGHT DELIMITER[O] " " " " " " "
. LEFT_DELIMITER[1] for source lines that are PDL comments
. RIGHT DELIMITER[1] " " " " " " "

/¥ right delimiter may be null string ¥/

end data

Fig. 3. Excerpt of data definition showing FILE-INFORMATION table format

29

To EXTRACT_VERSION CODE

.1 set BEGINNING to the first non-blank character after
the line number field on the input line (if any)
.2 if (the line begins with the EXTRACT_SIGNAL)
H set EXTRACT = 1
:=>(else)
: set EXTRACT = 0
t.oend if
.3 increment SEQUENCE _NUMBER[EXTRACT] /% This is the ¥/
/¥ sequence number that should be found in the #/
. /% version code of the incoming line ¥/
oA set SEQUENCE_CODE = VERSION_CODE(SEQUENCELNUMBER[EXTRACT])
/% this is the sequence number code that will be */
/% put on the output line */
) compute where version code would begin on input line,
if it were present
.6 if (EXTRACT > 0)
T 3 set MODE = PDLmode
s=>(else)
.8 : set MODE = SourceMode
t..end if
.9 case (MODE)
:=>(0) /* Left delimiter only in version code ¥/
if (LEFT_DELIMITER[EXTRACT] is at proper place
¢ on input line) then
: extract 2-character CHECK_CODE and OLD_DATE_ CODE
: from input line
:->(else) ,
: set LINE_CODE = NULL
: teeend if
:=>(1) /% Both left and right delimiters in version code /¥
.12 : if (LEFT_DELIMITER[EXTRACT] and RIGHT_DELIMITER[EXTRACT]
at proper place on input line) then
.13 : : extract 2~character LINE CODE and OLD_DATE_CODE
: : from input line
: :=>(else)
.14 : : set LINE _CODE = NULL

.10

<11

: t..end if
:=>(2) /% Version code starts in CODF_COLUMN of input line ¥/
: extract 2-character LINE_CODE and OLD_DATE_CODE
: from input line
t..end case
end to

Fig. 4. The procedure for extracting the CHECK-CODE and OLD-DATE-CODE from the input line and computing the
proper sequence number for the line

To COMPUTE_CHECKSUM

o1 if (EXTRACT > 0) /* i. e., if there is an ¥/
¢+ /% EXTRACT_SIGNAL on the line */
.2 : set BEGINNING = BEGINNING + length(EXTRACT_SIGNAL)
' : /% s0 as to jump over the extraction signal in ¥*/
: /¥ the checksum count. ’ */
t..end
AU set EXPANSION COUNT = O
LINE_SUM = 0
5 loop for i = 1 to length of input line
.6 ! set CH to the i-th character on the lnput line
T 1 if (i >= BEGINNING)
.8 | set LINE_SUM = LINE_SUM XOR 2¥(LINE_SUM AND 16383);
| LINE_SUM = LINE_SUM XOR (LINE_SUM/16384) XOR CH
! /% XOR and AND operate on the binary */
| /% equivalents of each operand. */
! :..end if
.9 ! if CH is a tab (control-I)
.10 ! increment EXPANSION_COUNT by
| B TAB_WIDTH—[(EXPANSION_COUNT—1) modulo TAB_WIDTH]
1 /% to count the equivalent column that the ¥/
| /* output line will be in at this point #/
1 :1=>(else)
.11 | B increment EXPANSION_COUNT only by 1
! :..end if
l..repeat
.12 set LINE_SUM

= (LINE_SUM MOD 8281);
CHECK_CODE = VERSION_CODE(LINE_SUM)

end to

Fig. 5. The procedure for computing the checksum code and éolumn at end of input line

31

32

To REATTACH_NEW_VERSION_CODE

.10

W1

.12
.13

<14
.15

print "." on the terminal to indicate a line has been processed
if (CODE_COLUMN >0) /# i. e., the code is supposed to be *®/
: /% put in a certain column ®/
NumberTabsNeeded = max[(CODE_COLUMN + TAB WIDTH -2
: - EXPANSION_COUNT)/TAB_WIDTH, 0]
:=>(else)
: NumberTabsNeeded =0
te.eend if
lop the old version code and any trailing spaces and tab
characters off of the input line
if (the line would be too long if a version code were appended)
print a warning message
set WARNING = TRUE
~>(else)
make output line by concatenating input line with
NumberTabsNeeded tab characteps, LEFT_DELIMITER[EXTRACT],
CHECK_CODE, and SEQUENCE_CODE
if (LINE_CODE = CHECK_CODE)
: append OLD_DATE CODE to output line
t=>(else)
H append TODAY_CODE to output line
t..end if
finally, append RIGHT_DELIMITER[EXTRACT] to output line
/% It may be null #/
if (LINE_CODE <> CHECK_CODE)
: print the output line on the terminal
: t..end if
te.oend if
end to

ss me oo oo

e sa ®¢ us se es ws s

Fig. 6. Procedures for reattaching the version code to the output fine

Program: CHECKSUM
JERERBERERERREERR SRR IR R RER RN AR AR RRR AR KB ORARRARRERRARRRERRN

/¥
/%
/%
/¥
/¥

%/
This program puts a version code on each physical line */
of a source file for use in applications where version */

statistics of such files are to be extracted and analyzed. */

®/

/***********************************%**************************/

01
02
3
.)-I'
5
.6

T

.8
9

.10

W11
.12

.13
.14
.15

.16

A7
.18
.19

.20

.21
.22

define program_constants

declare program_variables

set_initial_values

announce the program title and version identifier
get_todays _date /¥ encode it into date_code ¥/

loop /% for at least one file, and maybe more, as will ¥/

Gumb Gum G SmE S gom S sam as Gme Cmb Gmv Sm SR SR Sun Cub Gup Sub Sum S Sap b Sum TP cun Cum Tu 0eB o

/% be determined later by the user */
get_file names(IN_FILE, OUT_FILE, KIND)
/* KIND may be input or determined from IN_FILE ¥/
/% OUT_FILE is a dummy file name only %/
open both files

set_up_version_delimiters /* using search key from#/
/¥ IN _FILE name to identify the particular */
/¥ delimiters to be used by the program. */
reset_parameters /¥ to initial values, so that */
/% more than 1 file can be processed, as will ¥/
/% be determined later by the user X/

loop while (not end_of_ file on input)
! input a line /¥ check for ASCII characters ¥/
! /% only and set WARNING switch TRUE if #/
! /% file contains non-ASCII characters */
! extract_version code from input line
! compute_checksum of input line
! reattach_new_version code
! /* add tabs to code_column, if indicated. */
! /* also, set WARNING to true if line would ¥/
! /#* be too long if the code were appended. ¥/
! output the line
!..repeat

close both files

if WARNING not set to TRUE

: rename the OUT_FILE as IN_FILE

:=>(else)

: inform the user that there has been a problem,

and that the dummy is the checksummed file
t..end if
prompt user for "what next", and accept answer

{....repeat if user desires another run
end program

{hT
{RI
{u#
{£%
{Te
{vQ
{u#
{RI

{CF
{JU
{N/
{uv
{$n
{&
{=Q
{p:

{-u
{SI
{kb
{v?
{us
{1p
fY?
{=Q
{8W
{b(
{K4
{lle
{oB
{c$
{,L
{™m
{ou
{N"
{'B
{x)
{L\
{Jj
{3d
{ed
{v5
{\[
{%H
{UE
{>a
{rd

(r}
1(r}
"(r}
#(y}
$(r}
%(r}
&(r}
*(r}
((r}
))3}
)%}
+(y}
’(Y}
-(r}
)3}
/)3}
o(r}

1(y}
3(r}
4(y}
5(y}
6)%}
7)%}
8)3}
/)3}
:)3}
;(r}
<y}
=)%}
>(r}
?2(r}
@(r}
Ay}
B(y}
C(y}
D(r}
E(r}
F(y}
G(y}
H(r}
I(r}
J(y}
K(y}
M(r}
N(y}
0(y}
P(r}

Fig. 7. The CHECKSUM program design language file after execution of the CHECKSUM program on the file

33

4

FILE: CHECKSUM.PDL, STATUS: 26MAR82

Program: CHECKSUM
JHREERRERERERRRERERRRRRRRR AR RN BN RN LR RN R R RRRRRRRR BRI RRRRR)

/*

/* This program puts a version code on each physical line
/* of a source flle for use in applications where version
statistics of such flles are to be extracted and analyzed.

/®
VA

%/
WA
*/
%/
*/

JERRERBRREER R RERRRRR RN AR AR R RERRERRERRRRRERRREURURRRCR RN SRR/

08
9

.10

.11
.12

-13
<14
«15

.16

A7
.18

19

+20

.21
.22

define program_constants

declare program_variables

set_initial_values

announce the program title and version identifier
get_todays_date /¥* encode it into date_code */
loop /% for at least one file, and maybe more, as will ¥/

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
1
!
!
!
!
!
!
!
!
!
!

/% be determined later by the user
get_file names(IN_FILE, OUT_FILE, KIND)

*/

/% KIND may be input or determined from IN FILE */

/% QUT_FILE is a dummy file name only

open both files

*/

set_up_version_delimiters /% using search key from¥/

/* IN_FILE name to identify the particular
/¥ delimiters to be used by the program.
reset_parameters /% to initial values, so that
/* more than 1 file can be processed, as will
/* be determined later by the user
loop while (not end_of file on input)
! input a line /¥ check for ASCII characters
! /% only and set WARNING switch TRUE if
! /* file contains non~ASCII characters
! extract_version_code from input line
! compute_checksum of input line
! reattach_new_version_code
1 /% add tabs to code_column, if indicated.
1 /% also, set WARNING to true if line would
! /* be too long if the code were appended.
! output the line
!..repeat
close both files
if WARNING not set to TRUE
rename the OUT_FILE as IN_FILE
~>(else)

se se s oo

and that the dummy is the checksummed file

teeend if
prompt user for "what next", and accept answer

{....repeat if user desires another run
end program

*/
x/
%/
oA
*/

*/
*/
x/

*/
W4
*/

inform the user that there has been a problem,

[l

> e
[T S

[aan i pax]

[Dl]

[M]
[RM]

[l

[M]
(D]

Fig. 8.

The output of the PRINT program, showing changes made in the CHECKSUM pragram design since March 26, 1982

VERSION STATIST

Number of source statements
Since last version update:
new (no vers id) statements
apparent deleted Statements
modified statements
duplicated statements

Other mod since status date

CHANGE HISTOR
Date No.
O5MAR82 20
12MAR82 15
19MAR82 4
024PRB2 4
16APRB2 5

I

"

cs

48

Fig. 9. The Version Statistics and Change History printout

for the CHECKSUM program design

35

